Measuring topological invariants from generalized edge states in polaritonic quasicrystals (1607.03813v2)
Abstract: We investigate the topological properties of Fibonacci quasicrystals using cavity polaritons. Composite structures made of the concatenation of two Fibonacci sequences allow investigating generalized edge states forming in the gaps of the fractal energy spectrum. We employ these generalized edge states to determine the topological invariants of the quasicrystal. When varying a structural degree of freedom (phason) of the Fibonacci sequence, the edge states spectrally traverse the gaps, while their spatial symmetry switches: the periodicity of this spectral and spatial evolution yields direct measurements of the gap topological numbers. The topological invariants that we determine coincide with those assigned by the gap-labeling theorem, illustrating the direct connection between the fractal and topological properties of Fibonacci quasicrystals.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.