Lipschitz regularity results for nonlinear strictly elliptic equations and applications (1607.03623v1)
Abstract: Most of lipschitz regularity results for nonlinear strictly elliptic equations are obtained for a suitable growth power of the nonlinearity with respect to the gradient variable (subquadratic for instance). For equations with superquadratic growth power in gradient, one usually uses weak Bernstein-type arguments which require regularity and/or convex-type assumptions on the gradient nonlinearity. In this article, we obtain new Lipschitz regularity results for a large class of nonlinear strictly elliptic equations with possibly arbitrary growth power of the Hamiltonian with respect to the gradient variable using some ideas coming from Ishii-Lions' method. We use these bounds to solve an ergodic problem and to study the regularity and the large time behavior of the solution of the evolution equation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.