Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the optimal $L^q$-regularity for viscous Hamilton-Jacobi equations with subquadratic growth in the gradient (2112.02676v3)

Published 5 Dec 2021 in math.AP

Abstract: This paper studies a maximal $Lq$-regularity property for nonlinear elliptic equations of second order with a zero-th order term and gradient nonlinearities having superlinear and sub-quadratic growth, complemented with Dirichlet boundary conditions. The approach is based on the combination of linear elliptic regularity theory and interpolation inequalities, so that the analysis of the maximal regularity estimates boils down to determine lower order integral bounds. The latter are achieved via a $Lp$ duality method, which exploits the regularity properties of solutions to stationary Fokker-Planck equations. For the latter problems, we discuss both global and local estimates. Our main novelties for the regularity properties of this class of nonlinear elliptic boundary-value problems are the treatment of equations with a zero-th order term together with the analysis of the end-point summability threshold $q=d(\gamma-1)/\gamma$, $d$ being the dimension of the ambient space and $\gamma>1$ the growth of the first-order term in the gradient variable.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.