Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Resonance phenomena in a scalar delay differential equation with two state-dependent delays (1607.02683v3)

Published 10 Jul 2016 in math.DS and math.NA

Abstract: We study a scalar DDE with two delayed feedback terms that depend linearly on the state. The associated constant-delay DDE, obtained by freezing the state dependence, is linear and without recurrent dynamics. With state dependent delay terms, on the other hand, the DDE shows very complicated dynamics. To investigate this, we perform a bifurcation analysis of the system and present its bifurcation diagram in the plane of the two feedback strengths. It is organized by Hopf-Hopf bifurcation points that give rise to curves of torus bifurcation and associated two-frequency dynamics in the form of invariant tori and resonance tongues. We numerically determine the type of the Hopf-Hopf bifurcation points by computing the normal form on the center manifold; this requires the expansion of the functional defining the state-dependent DDE in a power series whose terms up to order three only contain constant delays. We implemented this expansion and the computation of the normal form coefficients in Matlab using symbolic differentiation. Numerical continuation of the torus bifurcation curves confirms the correctness of our normal form calculations. Moreover, it enables us to compute the curves of torus bifurcations more globally, and to find associated curves of saddle-node bifurcations of periodic orbits that bound the resonance tongues. The tori themselves are computed and visualized in a three-dimensional projection, as well as the planar trace of a suitable Poincar\'e section. In particular, we compute periodic orbits on locked tori and their associated unstable manifolds. This allows us to study transitions through resonance tongues and the breakup of a 1:4 locked torus. The work presented here demonstrates that state dependence alone is capable of generating a wealth of dynamical phenomena.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube