Papers
Topics
Authors
Recent
2000 character limit reached

Numeric Deduction in Symbolic Computation. Application to Normalizing Transformations

Published 27 May 2016 in cs.SC | (1607.02016v1)

Abstract: Algorithms of numeric (in exact arithmetic) deduction of analytical expressions, proposed and described by Shevchenko and Vasiliev (1993), are developed and implemented in a computer algebra code. This code is built as a superstructure for the computer algebra package by Shevchenko and Sokolsky (1993a) for normalization of Hamiltonian systems of ordinary differential equations, in order that high complexity problems of normalization could be solved. As an example, a resonant normal form of a Hamiltonian describing the hyperboloidal precession of a dynamically symmetric satellite is derived by means of the numeric deduction technique. The technique provides a considerable economy, about 30 times in this particular application, in computer memory consumption. It is naturally parallelizable. Thus the economy of memory consumption is convertible into a gain in computation speed.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.