Tautological relations via r-spin structures
Abstract: Relations among tautological classes on the moduli space of stable curves are obtained via the study of Witten's r-spin theory for higher r. In order to calculate the quantum product, a new formula relating the r-spin correlators in genus 0 to the representation theory of sl2 is proven. The Givental-Teleman classification of CohFTs is used at two special semisimple points of the associated Frobenius manifold. At the first semisimple point, the R-matrix is exactly solved in terms of hypergeometric series. As a result, an explicit formula for Witten's r-spin class is obtained (along with tautological relations in higher degrees). As an application, the r=4 relations are used to bound the Betti numbers of the tautological ring of the moduli of nonsingular curves. At the second semisimple point, the form of the R-matrix implies a polynomiality property in r of Witten's r-spin class. In the Appendix (with F. Janda), a conjecture relating the r=0 limit of Witten's r-spin class to the class of the moduli space of holomorphic differentials is presented.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.