Papers
Topics
Authors
Recent
2000 character limit reached

Well-conditioned boundary integral equation formulations and Nyström discretizations for the solution of Helmholtz problems with impedance boundary conditions in two-dimensional Lipschitz domains (1607.00769v1)

Published 4 Jul 2016 in math.NA

Abstract: We present a regularization strategy that leads to well-conditioned boundary integral equation formulations of Helmholtz equations with impedance boundary conditions in two-dimensional Lipschitz domains. We consider both the case of classical impedance boundary conditions, as well as the case of transmission impedance conditions wherein the impedances are certain coercive operators. The latter type of problems is instrumental in the speed up of the convergence of Domain Decomposition Methods for Helmholtz problems. Our regularized formulations use as unknowns the Dirichlet traces of the solution on the boundary of the domain. Taking advantage of the increased regularity of the unknowns in our formulations, we show through a variety of numerical results that a graded-mesh based Nystr\"om discretization of these regularized formulations leads to efficient and accurate solutions of interior and exterior Helmholtz problems with impedance boundary conditions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.