Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Join and slices for strict $\infty$-categories (1607.00668v4)

Published 3 Jul 2016 in math.CT and math.AT

Abstract: The goal of this paper is to develop a theory of join and slices for strict $\infty$-categories. To any pair of strict $\infty$-categories, we associate a third one that we call their join. This operation is compatible with the usual join of categories up to truncation. We show that the join defines a monoidal category structure on the category of strict $\infty$-categories and that it respects connected inductive limits in each variable. In particular, we obtain the existence of some right adjoints; these adjoints define $\infty$-categorical slices, in a generalized sense. We state some conjectures about the functoriality of the join and the slices with respect to higher lax and oplax transformations and we prove some first results in this direction. These results are used in another paper to establish a Quillen Theorem A for strict $\infty$-categories. Finally, in an appendix, we revisit the Gray tensor product of strict $\infty$-categories. One of the main tools used in this paper is Steiner's theory of augmented directed complexes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.