Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Finite-energy pseudoholomorphic planes with multiple asymptotic limits (1607.00324v2)

Published 1 Jul 2016 in math.SG

Abstract: It's known from from work of Hofer, Wysocki, and Zehnder [1996] and Bourgeois [2002] that in a contact manifold equipped with either a nondegenerate or Morse-Bott contact form, a finite-energy pseudoholomorphic curve will be asymptotic at each of its non removable punctures to a single periodic orbit of the Reeb vector field and that the convergence is exponential. We provide examples here to show that this need not be the case if the contact form is degenerate. More specifically, we show that on any contact manifold $(M, \xi)$ with cooriented contact structure one can choose a contact form $\lambda$ with $\ker\lambda=\xi$ and a compatible complex structure $J$ on $\xi$ so that for the associated $\mathbb{R}$-invariant almost complex structure $\tilde J$ on $\mathbb{R}\times M$ there exist families of embedded finite-energy $\tilde J$-holomorphic cylinders and planes having embedded tori as limit sets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.