Papers
Topics
Authors
Recent
2000 character limit reached

Performance of Ensemble Kalman filters in large dimensions

Published 30 Jun 2016 in math.PR, math.ST, and stat.TH | (1606.09321v2)

Abstract: Contemporary data assimilation often involves more than a million prediction variables. Ensemble Kalman filters (EnKF) have been developed by geoscientists. They are successful indispensable tools in science and engineering, because they allow for computationally cheap low ensemble state approximation for extremely large dimensional turbulent dynamical systems. The practical finite ensemble filter like EnKF necessarily involve modifications such as covariance inflation and localization, and it is a genuine mystery why they perform so well with small ensemble sizes in large dimensions. This paper provides the first rigorous stochastic analysis of the accuracy and covariance fidelity of EnKF in the practical regime where the ensemble size is much smaller than the large ambient dimension for EnKFs with random coefficients. A challenging issue overcome here is that EnKF in huge dimensions introduces unavoidable bias and model errors which need to be controlled and estimated.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.