Mixed $f$-divergence for multiple pairs of measures
Abstract: In this paper, the concept of the classical $f$-divergence for a pair of measures is extended to the mixed $f$-divergence for multiple pairs of measures. The mixed $f$-divergence provides a way to measure the difference between multiple pairs of (probability) measures. Properties for the mixed $f$-divergence are established, such as permutation invariance and symmetry in distributions. An Alexandrov-Fenchel type inequality and an isoperimetric inequality for the mixed $f$-divergence are proved.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.