Papers
Topics
Authors
Recent
2000 character limit reached

Quantum ergodicity and $L^p$ norms of restrictions of eigenfunctions

Published 26 Jun 2016 in math.AP, math.CA, math.DG, and math.SP | (1606.08066v1)

Abstract: We prove an analogue of Sogge's local $Lp$ estimates for $Lp$ norms of restrictions of eigenfunctions to submanifolds, and use it to show that for quantum ergodic eigenfunctions one can get improvements of the results of Burq-G\'erard-Tzvetkov, Hu, and Chen-Sogge. The improvements are logarithmic on negatively curved manifolds (without boundary) and by $o(1)$ for manifolds (with or without boundary) with ergodic geodesic flows. In the case of ergodic billiards with piecewise smooth boundary, we get $o(1)$ improvements on $L\infty$ estimates of Cauchy data away from a shrinking neighborhood of the corners, and as a result using the methods of Ghosh-Reznikov-Sarnak and Jung-Zelditch, we get that the number of nodal domains of two dimensional ergodic billiards tends to infinity as $\lambda \to \infty$. These results work only for a full density subsequence of any given orthonormal basis of eigenfunctions. We also present an extension of the $Lp$ estimates of Burq-G\'erard-Tzvetkov, Hu, and Chen-Sogge, for the restrictions of Dirichlet and Neumann eigenfunctions to compact submanifolds of the interior of manifolds with piecewise smooth boundary. This part does not assume ergodicity on the manifolds.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.