Papers
Topics
Authors
Recent
2000 character limit reached

Probability that product of real random matrices have all eigenvalues real tend to 1 (1606.07581v1)

Published 24 Jun 2016 in math.PR, math-ph, and math.MP

Abstract: In this article we consider products of real random matrices with fixed size. Let $A_1,A_2, \dots $ be i.i.d $k \times k$ real matrices, whose entries are independent and identically distributed from probability measure $\mu$. Let $X_n = A_1A_2\dots A_n$. Then it is conjectured that $$\mathbb{P}(X_n \text{ has all real eigenvalues}) \rightarrow 1 \text{ as } n \rightarrow \infty.$$ We show that the conjecture is true when $\mu$ has an atom.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.