Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

DropNeuron: Simplifying the Structure of Deep Neural Networks (1606.07326v3)

Published 23 Jun 2016 in cs.CV, cs.LG, and stat.ML

Abstract: Deep learning using multi-layer neural networks (NNs) architecture manifests superb power in modern machine learning systems. The trained Deep Neural Networks (DNNs) are typically large. The question we would like to address is whether it is possible to simplify the NN during training process to achieve a reasonable performance within an acceptable computational time. We presented a novel approach of optimising a deep neural network through regularisation of net- work architecture. We proposed regularisers which support a simple mechanism of dropping neurons during a network training process. The method supports the construction of a simpler deep neural networks with compatible performance with its simplified version. As a proof of concept, we evaluate the proposed method with examples including sparse linear regression, deep autoencoder and convolutional neural network. The valuations demonstrate excellent performance. The code for this work can be found in http://www.github.com/panweihit/DropNeuron

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube