Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Incentivizing Evaluation via Limited Access to Ground Truth: Peer-Prediction Makes Things Worse (1606.07042v1)

Published 22 Jun 2016 in cs.GT

Abstract: In many settings, an effective way of evaluating objects of interest is to collect evaluations from dispersed individuals and to aggregate these evaluations together. Some examples are categorizing online content and evaluating student assignments via peer grading. For this data science problem, one challenge is to motivate participants to conduct such evaluations carefully and to report them honestly, particularly when doing so is costly. Existing approaches, notably peer-prediction mechanisms, can incentivize truth telling in equilibrium. However, they also give rise to equilibria in which agents do not pay the costs required to evaluate accurately, and hence fail to elicit useful information. We show that this problem is unavoidable whenever agents are able to coordinate using low-cost signals about the items being evaluated (e.g., text labels or pictures). We then consider ways of circumventing this problem by comparing agents' reports to ground truth, which is available in practice when there exist trusted evaluators---such as teaching assistants in the peer grading scenario---who can perform a limited number of unbiased (but noisy) evaluations. Of course, when such ground truth is available, a simpler approach is also possible: rewarding each agent based on agreement with ground truth with some probability, and unconditionally rewarding the agent otherwise. Surprisingly, we show that the simpler mechanism achieves stronger incentive guarantees given less access to ground truth than a large set of peer-prediction mechanisms.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.