Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A fully Bayesian strategy for high-dimensional hierarchical modeling using massively parallel computing (1606.06659v1)

Published 21 Jun 2016 in stat.CO

Abstract: Markov chain Monte Carlo (MCMC) is the predominant tool used in Bayesian parameter estimation for hierarchical models. When the model expands due to an increasing number of hierarchical levels, number of groups at a particular level, or number of observations in each group, a fully Bayesian analysis via MCMC can easily become computationally demanding, even intractable. We illustrate how the steps in an MCMC for hierarchical models are predominantly one of two types: conditionally independent draws or low-dimensional draws based on summary statistics of parameters at higher levels of the hierarchy. Parallel computing can increase efficiency by performing embarrassingly parallel computations for conditionally independent draws and calculating the summary statistics using parallel reductions. During the MCMC algorithm, we record running means and means of squared parameter values to allow convergence diagnosis and posterior inference while avoiding the costly memory transfer bottleneck. We demonstrate the effectiveness of the algorithm on a model motivated by next generation sequencing data, and we release our implementation in R packages fbseq and fbseqCUDA.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.