Papers
Topics
Authors
Recent
Search
2000 character limit reached

Natural Language Generation as Planning under Uncertainty Using Reinforcement Learning

Published 15 Jun 2016 in cs.CL and cs.AI | (1606.04686v1)

Abstract: We present and evaluate a new model for Natural Language Generation (NLG) in Spoken Dialogue Systems, based on statistical planning, given noisy feedback from the current generation context (e.g. a user and a surface realiser). We study its use in a standard NLG problem: how to present information (in this case a set of search results) to users, given the complex trade- offs between utterance length, amount of information conveyed, and cognitive load. We set these trade-offs by analysing existing MATCH data. We then train a NLG pol- icy using Reinforcement Learning (RL), which adapts its behaviour to noisy feed- back from the current generation context. This policy is compared to several base- lines derived from previous work in this area. The learned policy significantly out- performs all the prior approaches.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.