A Critical Value Function Approach, with an Application to Persistent Time-Series (1606.03496v4)
Abstract: Researchers often rely on the t-statistic to make inference on parameters in statistical models. It is common practice to obtain critical values by simulation techniques. This paper proposes a novel numerical method to obtain an approximately similar test. This test rejects the null hypothesis when the test statistic is larger than a critical value function (CVF) of the data. We illustrate this procedure when regressors are highly persistent, a case in which commonly-used simulation methods encounter difficulties controlling size uniformly. Our approach works satisfactorily, controls size, and yields a test which outperforms the two other known similar tests.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.