Papers
Topics
Authors
Recent
2000 character limit reached

Bootstrapping Distantly Supervised IE using Joint Learning and Small Well-structured Corpora

Published 10 Jun 2016 in cs.CL | (1606.03398v2)

Abstract: We propose a framework to improve performance of distantly-supervised relation extraction, by jointly learning to solve two related tasks: concept-instance extraction and relation extraction. We combine this with a novel use of document structure: in some small, well-structured corpora, sections can be identified that correspond to relation arguments, and distantly-labeled examples from such sections tend to have good precision. Using these as seeds we extract additional relation examples by applying label propagation on a graph composed of noisy examples extracted from a large unstructured testing corpus. Combined with the soft constraint that concept examples should have the same type as the second argument of the relation, we get significant improvements over several state-of-the-art approaches to distantly-supervised relation extraction.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.