2000 character limit reached
Algebra and geometry of Hamilton's quaternions (1606.03315v1)
Published 10 Jun 2016 in math.HO and physics.hist-ph
Abstract: Inspired by the relation between the algebra of complex numbers and plane geometry, William Rowan Hamilton sought an algebra of triples for application to three dimensional geometry. Unable to multiply and divide triples, he invented a non-commutative division algebra of quadruples, in what he considered his most significant work, generalizing the real and complex number systems. We give a motivated introduction to quaternions and discuss how they are related to Pauli matrices, rotations in three dimensions, the three sphere, the group SU(2) and the celebrated Hopf fibrations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.