Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A universal asymptotic regime in the hyperbolic nonlinear Schrödinger equation (1606.02782v1)

Published 8 Jun 2016 in nlin.PS, math-ph, math.MP, physics.ao-ph, physics.optics, and physics.plasm-ph

Abstract: The appearance of a fundamental long-time asymptotic regime in the two space one time dimensional hyperbolic nonlinear Schr\"odinger (HNLS) equation is discussed. Based on analytical and extensive numerical simulations an approximate self-similar solution is found for a wide range of initial conditions -- essentially for initial lumps of small to moderate energy. Even relatively large initial amplitudes, which imply strong nonlinear effects, eventually lead to local structures resembling those of the self-similar solution, with appropriate small modifications. These modifications are important in order to properly capture the behavior of the phase of the solution. This solution has aspects that suggest it is a universal attractor emanating from wide ranges of initial data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.