Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Consistent Manifold Representation for Topological Data Analysis (1606.02353v3)

Published 7 Jun 2016 in math.CA

Abstract: For data sampled from an arbitrary density on a manifold embedded in Euclidean space, the Continuous k-Nearest Neighbors (CkNN) graph construction is introduced. It is shown that CkNN is geometrically consistent in the sense that under certain conditions, the unnormalized graph Laplacian converges to the Laplace-Beltrami operator, spectrally as well as pointwise. It is proved for compact (and conjectured for noncompact) manifolds that CkNN is the unique unweighted construction that yields a geometry consistent with the connected components of the underlying manifold in the limit of large data. Thus CkNN produces a single graph that captures all topological features simultaneously, in contrast to persistent homology, which represents each homology generator at a separate scale. As applications we derive a new fast clustering algorithm and a method to identify patterns in natural images topologically. Finally, we conjecture that CkNN is topologically consistent, meaning that the homology of the Vietoris-Rips complex (implied by the graph Laplacian) converges to the homology of the underlying manifold (implied by the Laplace-de Rham operators) in the limit of large data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.