Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory-enhanced Decoder for Neural Machine Translation (1606.02003v1)

Published 7 Jun 2016 in cs.CL

Abstract: We propose to enhance the RNN decoder in a neural machine translator (NMT) with external memory, as a natural but powerful extension to the state in the decoding RNN. This memory-enhanced RNN decoder is called \textsc{MemDec}. At each time during decoding, \textsc{MemDec} will read from this memory and write to this memory once, both with content-based addressing. Unlike the unbounded memory in previous work\cite{RNNsearch} to store the representation of source sentence, the memory in \textsc{MemDec} is a matrix with pre-determined size designed to better capture the information important for the decoding process at each time step. Our empirical study on Chinese-English translation shows that it can improve by $4.8$ BLEU upon Groundhog and $5.3$ BLEU upon on Moses, yielding the best performance achieved with the same training set.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mingxuan Wang (83 papers)
  2. Zhengdong Lu (35 papers)
  3. Hang Li (277 papers)
  4. Qun Liu (230 papers)
Citations (65)

Summary

We haven't generated a summary for this paper yet.