Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Index estimates for free boundary minimal hypersurfaces (1605.09704v2)

Published 31 May 2016 in math.DG

Abstract: We show that the Morse index of a properly embedded free boundary minimal hypersurface in a strictly mean convex domain of the Euclidean space grows linearly with the dimension of its first relative homology group (which is at least as big as the number of its boundary components, minus one). In ambient dimension three, this implies a lower bound for the index of a free boundary minimal surface which is linear both with respect to the genus and the number of boundary components. Thereby, the compactness theorem by Fraser and Li implies a strong compactness theorem for the space of free boundary minimal surfaces with uniformly bounded Morse index inside a convex domain. Our estimates also imply that the examples constructed, in the unit ball, by Fraser-Schoen and Folha-Pacard-Zolotareva have arbitrarily large index. Extensions of our results to more general settings (including various classes of positively curved Riemannian manifolds and other convexity assumptions) are discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube