Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 1. Super-analog of Reshetikhin formula (1605.09189v1)
Abstract: We study scalar products of Bethe vectors in integrable models solvable by nested algebraic Bethe ansatz and possessing $\mathfrak{gl}(2|1)$ symmetry. Using explicit formulas of the monodromy matrix entries multiple actions onto Bethe vectors we obtain a representation for the scalar product in the most general case. This explicit representation appears to be a sum over partitions of the Bethe parameters. It can be used for the analysis of scalar products involving on-shell Bethe vectors. As a by-product, we obtain a determinant representation for the scalar products of generic Bethe vectors in integrable models with $\mathfrak{gl}(1|1)$ symmetry.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.