Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Temporal Clustering in Dynamic Networks with Tensor Decomposition (1605.08074v3)

Published 25 May 2016 in cs.SI

Abstract: Dynamic networks are increasingly being usedd to model real world datasets. A challenging task in their analysis is to detect and characterize clusters. It is useful for analyzing real-world data such as detecting evolving communities in networks. We propose a temporal clustering framework based on a set of network generative models to address this problem. We use PARAFAC decomposition to learn network models from datasets.We then use $K$-means for clustering, the Silhouette criterion to determine the number of clusters, and a similarity score to order the clusters and retain the significant ones. In order to address the time-dependent aspect of these clusters, we propose a segmentation algorithm to detect their formations, dissolutions and lifetimes. Synthetic networks with ground truth and real-world datasets are used to test our method against state-of-the-art, and the results show that our method has better performance in clustering and lifetime detection than previous methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.