On Asymptotics and Resurgent Structures of Enumerative Gromov-Witten Invariants (1605.07473v2)
Abstract: Making use of large-order techniques in asymptotics and resurgent analysis, this work addresses the growth of enumerative Gromov-Witten invariants---in their dependence upon genus and degree of the embedded curve---for several different threefold Calabi-Yau varieties. In particular, while the leading asymptotics of these invariants at large genus or at large degree is exponential, at combined large genus and degree it turns out to be factorial. This factorial growth has a resurgent nature, originating via mirror symmetry from the resurgent-transseries description of the B-model free energy. This implies the existence of nonperturbative sectors controlling the asymptotics of the Gromov-Witten invariants, which could themselves have an enumerative-geometry interpretation. The examples addressed include: the resolved conifold; the local surfaces local P2 and local P1 x P1; the local curves and Hurwitz theory; and the compact quintic. All examples suggest very rich interplays between resurgent asymptotics and enumerative problems in algebraic geometry.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.