Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semiparametric energy-based probabilistic models (1605.07371v1)

Published 24 May 2016 in q-bio.NC, cond-mat.stat-mech, and stat.ML

Abstract: Probabilistic models can be defined by an energy function, where the probability of each state is proportional to the exponential of the state's negative energy. This paper considers a generalization of energy-based models in which the probability of a state is proportional to an arbitrary positive, strictly decreasing, and twice differentiable function of the state's energy. The precise shape of the nonlinear map from energies to unnormalized probabilities has to be learned from data together with the parameters of the energy function. As a case study we show that the above generalization of a fully visible Boltzmann machine yields an accurate model of neural activity of retinal ganglion cells. We attribute this success to the model's ability to easily capture distributions whose probabilities span a large dynamic range, a possible consequence of latent variables that globally couple the system. Similar features have recently been observed in many datasets, suggesting that our new method has wide applicability.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube