Papers
Topics
Authors
Recent
2000 character limit reached

Toda chain from the kink-antikink lattice

Published 23 May 2016 in hep-th, math-ph, and math.MP | (1605.06867v4)

Abstract: In this paper, we have studied the kink and antikink solutions in several neutral scalar models in 1+1 dimension. We follow the standard approach to write down the leading order and the second order force between long distance separated kink and antikink. The leading order force is proportional to exponential decay with respect to the distance between the two nearest kinks or antikinks. The second order force have a similar behavior with the larger decay factor, namely $3\over 2$. We make use of these properties to construct the kink lattice. The dynamics of the kink lattice with leading order force can be identified as ordinary nonperiodic Toda lattice. Also the periodic Toda lattice can be obtained when the number of kink lattice is even. The system of kink lattice with force up to the next order corresponds to a new specific deformation of Toda lattice system. There is no well study on this deformation in the integrable literatures.We found that the deformed Toda system are near integrable system, since the integrability are hindered by high order correction terms. Our work provides a effective theory for kink interactions and a new near or quasi integrable model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.