Papers
Topics
Authors
Recent
Search
2000 character limit reached

A minimal coupled fluid-discrete element model for bedload transport

Published 19 May 2016 in physics.geo-ph | (1605.06085v1)

Abstract: A minimal Lagragian two-phase model to study turbulent bedload transport focusing on the granular phase is presented, and validated with experiments. The model intends to describe bedload transport of massive particles in fully rough flows at relatively low Shields numbers, for which no suspension occurs. A discrete element method for the granular phase is coupled with a one dimensional volume-averaged two-phase momentum equation for the fluid phase. The coupling between the discrete granular phase and the continuous fluid phase is discussed, and a consistent averaging formulation adapted to bedload transport is introduced. An original simple discrete random walk model is proposed to account for the fluid velocity fluctuations. The model is compared with experiments considering both classical sediment transport rate as a function of the Shields number, and depth profiles of solid velocity, volume fraction, and transport rate density, from existing bedload transport experiments in inclined flume. The results successfully reproduce the classical 3/2 power law, and more importantly describe well the depth profiles of the granular phase, showing that the model is able to reproduce the particle scale mechanisms. From a sensitivity analysis, it is shown that the fluctuation model allows to reproduce a realistic critical Shields number, and that the influence of the granular parameters on the macroscopic results are weak. Nevertheless, the analysis of the corresponding depth profiles reveals an evolution of the depth structure of the granular phase with varying restitution and friction coefficients, which denotes the non-trivial underlying physical mechanisms.

Citations (68)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.