ODE/IM correspondence for modified $B_2^{(1)}$ affine Toda field equation (1605.04668v2)
Abstract: We study the massive ODE/IM correspondence for modified $B_2{(1)}$ affine Toda field equation. Based on the $\psi$-system for the solutions of the associated linear problem, we obtain the Bethe ansatz equations. We also discuss the T-Q relations, the T-system and the Y-system, which are shown to be related to those of the $A_3/{\bf Z}_2$ integrable system. We consider the case that the solution of the linear problem has a monodromy around the origin, which imposes nontrivial boundary conditions for the T-/Y-system. The high-temperature limit of the T- and Y-system and their monodromy dependence are studied numerically.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.