Papers
Topics
Authors
Recent
Search
2000 character limit reached

Cumulative Activation in Social Networks

Published 16 May 2016 in cs.SI | (1605.04635v2)

Abstract: Most studies on influence maximization focus on one-shot propagation, i.e. the influence is propagated from seed users only once following a probabilistic diffusion model and users' activation are determined via single cascade. In reality it is often the case that a user needs to be cumulatively impacted by receiving enough pieces of information propagated to her before she makes the final purchase decision. In this paper we model such cumulative activation as the following process: first multiple pieces of information are propagated independently in the social network following the classical independent cascade model, then the user will be activated (and adopt the product) if the cumulative pieces of information she received reaches her cumulative activation threshold. Two optimization problems are investigated under this framework: seed minimization with cumulative activation (SM-CA), which asks how to select a seed set with minimum size such that the number of cumulatively active nodes reaches a given requirement $\eta$; influence maximization with cumulative activation (IM-CA), which asks how to choose a seed set with fixed budget to maximize the number of cumulatively active nodes. For SM-CA problem, we design a greedy algorithm that yields a bicriteria $O(\ln n)$-approximation when $\eta=n$, where $n$ is the number of nodes in the network. For both SM-CA problem with $\eta<n$ and IM-CA problem, we prove strong inapproximability results. Despite the hardness results, we propose two efficient heuristic algorithms for SM-CA and IM-CA respectively based on the reverse reachable set approach. Experimental results on different real-world social networks show that our algorithms significantly outperform baseline algorithms.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.