Papers
Topics
Authors
Recent
2000 character limit reached

Horosphere topology

Published 13 May 2016 in math.CV and math.MG | (1605.04119v6)

Abstract: We introduce a prime end-type theory on complete Kobayashi hyperbolic manifolds using horosphere sequences. This allows to introduce a new notion of boundary-new even in the unit disc in the complex space-the horosphere boundary, and a topology on the manifold together with its horosphere boundary, the horosphere topology. We prove that a bounded strongly pseudoconvex domain endowed with the horosphere topology is homeomorphic to its Euclidean closure, while for the polydisc such a horosphere topology is not even Hausdorff and is different from the Gromov topology. We use this theory to study boundary behavior of univalent maps from bounded strongly pseudoconvex domains. Among other things, we prove that every univalent map of the unit ball whose image is bounded and convex, extends as a homeomorphism up to the closure. Such a result, relying in an essential way on our theory and on the Gromov hyperbolicity theory, is completely new, dealing with non smooth domains.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.