A solution to the reversible embedding problem for finite Markov chains (1605.03502v1)
Abstract: The embedding problem for Markov chains is a famous problem in probability theory and only partial results are available up till now. In this paper, we propose a variant of the embedding problem called the reversible embedding problem which has a deep physical and biochemical background and provide a complete solution to this new problem. We prove that the reversible embedding of a stochastic matrix, if it exists, must be unique. Moreover, we obtain the sufficient and necessary conditions for the existence of the reversible embedding and provide an effective method to compute the reversible embedding. Some examples are also given to illustrate the main results of this paper.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.