Papers
Topics
Authors
Recent
2000 character limit reached

Recent Progress in Shearlet Theory: Systematic Construction of Shearlet Dilation Groups, Characterization of Wavefront Sets, and New Embeddings (1605.02873v1)

Published 10 May 2016 in math.FA

Abstract: The class of generalized shearlet dilation groups has recently been developed to allow the unified treatment of various shearlet groups and associated shearlet transforms that had previously been studied on a case-by-case basis. We consider several aspects of these groups: First, their systematic construction from associative algebras, secondly, their suitability for the characterization of wavefront sets, and finally, the question of constructing embeddings into the symplectic group in a way that intertwines the quasi-regular representation with the metaplectic one. For all questions, it is possible to treat the full class of generalized shearlet groups in a comprehensive and unified way, thus generalizing known results to an infinity of new cases. Our presentation emphasizes the interplay between the algebraic structure underlying the construction of the shearlet dilation groups, the geometric properties of the dual action, and the analytic properties of the associated shearlet transforms.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.