On Selmer groups and factoring $p$-adic $L$-functions (1605.01026v2)
Abstract: Samit Dasgupta has proved a formula factoring a certain restriction of a 3-variable Rankin-Selberg $p$-adic $L$-function as a product of a 2-variable $p$-adic $L$-function related to the adjoint representation of a Hida family and a Kubota-Leopoldt $p$-adic $L$-function. We prove a result involving Selmer groups that along with Dasgupta's result is consistent with the main conjectures associated to the 4-dimensional representation (to which the 3-variable $p$-adic $L$-function is associated), the $3$-dimensional representation (to which the $2$-variable $p$-adic $L$-function is associated) and the $1$-dimensional representation (to which the Kubota-Leopoldt $p$-adic $L$-function is associated). Under certain additional hypotheses, we indicate how one can use work of Urban to deduce main conjectures for the $3$-dimensional representation and the $4$-dimensional representation. One key technical input to our methods is studying the behavior of Selmer groups under specialization.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.