Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations (1605.00906v2)
Abstract: We deal with a class of equations driven by nonlocal, possibly degenerate, integro-differential operators of differentiability order $s\in (0,1)$ and summability growth $p>1$, whose model is the fractional $p$-Laplacian with measurable coefficients. We state and prove several results for the corresponding weak supersolutions, as comparison principles, a priori bounds, lower semicontinuity, and many others. We then discuss the good definition of $(s,p)$-superharmonic functions, by also proving some related properties. We finally introduce the nonlocal counterpart of the celebrated Perron method in nonlinear Potential Theory.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.