Deformations of symplectic singularities and Orbit method for semisimple Lie algebras (1605.00592v4)
Abstract: We classify filtered quantizations of conical symplectic singularities and use this to show that all filtered quantizations of symplectic quotient singularities are spherical Symplectic reflection algebras of Etingof and Ginzburg. We further apply our classification and a classification of filtered Poisson deformations obtained by Namikawa to establish a version of the Orbit method for semisimple Lie algebras. Namely, we produce a natural map from the set of adjoint orbits in a semisimple Lie algebra to the set of primitive ideals in the universal enveloping algebra. We show that the map is injective for classical Lie algebras.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.