Papers
Topics
Authors
Recent
2000 character limit reached

Axial compression of a thin elastic cylinder: bounds on the minimum energy scaling law (1604.08574v2)

Published 28 Apr 2016 in math.AP and cond-mat.soft

Abstract: We consider the axial compression of a thin elastic cylinder placed about a hard cylindrical core. Treating the core as an obstacle, we prove upper and lower bounds on the minimum energy of the cylinder that depend on its relative thickness and the magnitude of axial compression. We focus exclusively on the setting where the radius of the core is greater than or equal to the natural radius of the cylinder. We consider two cases: the "large mandrel" case, where the radius of the core exceeds that of the cylinder, and the "neutral mandrel" case, where the radii of the core and cylinder are the same. In the large mandrel case, our upper and lower bounds match in their scaling with respect to thickness, compression, and the magnitude of pre-strain induced by the core. We construct three types of axisymmetric wrinkling patterns whose energy scales as the minimum in different parameter regimes, corresponding to the presence of many wrinkles, few wrinkles, or no wrinkles at all. In the neutral mandrel case, our upper and lower bounds match in a certain regime in which the compression is small as compared to the thickness; in this regime, the minimum energy scales as that of the unbuckled configuration. We achieve these results for both the von K\'arm\'an-Donnell model and a geometrically nonlinear model of elasticity.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.