Papers
Topics
Authors
Recent
2000 character limit reached

Relation between the rate of convergence of strong law of large numbers and the rate of concentration of Bayesian prior in game-theoretic probability (1604.07911v1)

Published 27 Apr 2016 in math.PR

Abstract: We study the behavior of the capital process of a continuous Bayesian mixture of fixed proportion betting strategies in the one-sided unbounded forecasting game in game-theoretic probability. We establish the relation between the rate of convergence of the strong law of large numbers in the self-normalized form and the rate of divergence to infinity of the prior density around the origin. In particular we present prior densities ensuring the validity of Erdos-Feller-Kolmogorov-Petrowsky law of the iterated logarithm.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.