Ergodicity of PCA: Equivalence between Spatial and Temporal Mixing Conditions
Abstract: For a general attractive Probabilistic Cellular Automata on S Z d , we prove that the (time-) convergence towards equilibrium of this Markovian parallel dynamics, exponentially fast in the uniform norm, is equivalent to a condition (A). This condition means the exponential decay of the inuence from the boundary for the invariant measures of the system restricted to nite boxes. For a class of reversible PCA dynamics on {--1, +1} Z d , with a naturally associated Gibbsian potential $\varphi$, we prove that a (spatial-) weak mixing condition (WM) for $\varphi$ implies the validity of the assumption (A); thus exponential (time-) ergodicity of these dynamics towards the unique Gibbs measure associated to $\varphi$ holds. On some particular examples we state that exponential ergodicity holds as soon as there is no phase transition.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.