Papers
Topics
Authors
Recent
2000 character limit reached

The Big Match in Small Space (1604.07634v1)

Published 26 Apr 2016 in cs.GT

Abstract: In this paper we study how to play (stochastic) games optimally using little space. We focus on repeated games with absorbing states, a type of two-player, zero-sum concurrent mean-payoff games. The prototypical example of these games is the well known Big Match of Gillete (1957). These games may not allow optimal strategies but they always have {\epsilon}-optimal strategies. In this paper we design {\epsilon}-optimal strategies for Player 1 in these games that use only O(log log T ) space. Furthermore, we construct strategies for Player 1 that use space s(T), for an arbitrary small unbounded non-decreasing function s, and which guarantee an {\epsilon}-optimal value for Player 1 in the limit superior sense. The previously known strategies use space {\Omega}(logT) and it was known that no strategy can use constant space if it is {\epsilon}-optimal even in the limit superior sense. We also give a complementary lower bound. Furthermore, we also show that no Markov strategy, even extended with finite memory, can ensure value greater than 0 in the Big Match, answering a question posed by Abraham Neyman.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.