2000 character limit reached
Deep Multi-fidelity Gaussian Processes (1604.07484v1)
Published 26 Apr 2016 in cs.LG and stat.ML
Abstract: We develop a novel multi-fidelity framework that goes far beyond the classical AR(1) Co-kriging scheme of Kennedy and O'Hagan (2000). Our method can handle general discontinuous cross-correlations among systems with different levels of fidelity. A combination of multi-fidelity Gaussian Processes (AR(1) Co-kriging) and deep neural networks enables us to construct a method that is immune to discontinuities. We demonstrate the effectiveness of the new technology using standard benchmark problems designed to resemble the outputs of complicated high- and low-fidelity codes.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.