Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Variance-Reduced ADMM (1604.07070v3)

Published 24 Apr 2016 in cs.LG, math.OC, and stat.ML

Abstract: The alternating direction method of multipliers (ADMM) is a powerful optimization solver in machine learning. Recently, stochastic ADMM has been integrated with variance reduction methods for stochastic gradient, leading to SAG-ADMM and SDCA-ADMM that have fast convergence rates and low iteration complexities. However, their space requirements can still be high. In this paper, we propose an integration of ADMM with the method of stochastic variance reduced gradient (SVRG). Unlike another recent integration attempt called SCAS-ADMM, the proposed algorithm retains the fast convergence benefits of SAG-ADMM and SDCA-ADMM, but is more advantageous in that its storage requirement is very low, even independent of the sample size $n$. We also extend the proposed method for nonconvex problems, and obtain a convergence rate of $O(1/T)$. Experimental results demonstrate that it is as fast as SAG-ADMM and SDCA-ADMM, much faster than SCAS-ADMM, and can be used on much bigger data sets.

Citations (55)

Summary

We haven't generated a summary for this paper yet.