Papers
Topics
Authors
Recent
Search
2000 character limit reached

Accelerated Stochastic ADMM with Variance Reduction

Published 13 Nov 2016 in cs.NA and math.OC | (1611.04074v4)

Abstract: Alternating Direction Method of Multipliers (ADMM) is a popular method for solving large-scale Machine Learning problems. Stochastic ADMM was proposed to reduce the per iteration computational complexity, which is more suitable for big data problems. Recently, variance reduction techniques have been integrated with stochastic ADMM in order to get a faster convergence rate, such as SAG-ADMM and SVRG-ADMM. However, their convergence rate is still suboptimal w.r.t the smoothness constant. In this paper, we propose an accelerated stochastic ADMM algorithm with variance reduction, which enjoys a faster convergence than all the existing stochastic ADMM algorithms. We theoretically analyse its convergence rate and show its dependence on the smoothness constant is optimal. We also empirically validate its effectiveness and show its priority over other stochastic ADMM algorithms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.