Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evolution between quantum Hall and conducting phases: simple models and some results

Published 14 Jul 2021 in cond-mat.str-el and hep-th | (2107.06911v1)

Abstract: Quantum many particle systems in which the kinetic energy, strong correlations, and band topology are all important pose an interesting and topical challenge. Here we introduce and study particularly simple models where all of these elements are present. We consider interacting quantum particles in two dimensions in a strong magnetic field such that the Hilbert space is restricted to the Lowest Landau Level (LLL). This is the familiar quantum Hall regime with rich physics determined by the particle filling and statistics. A periodic potential with a unit cell enclosing one flux quantum broadens the LLL into a Chern band with a finite bandwidth. The states obtained in the quantum Hall regime evolve into conducting states in the limit of large bandwidth. We study this evolution in detail for the specific case of bosons at filling factor $\nu = 1$. In the quantum Hall regime the ground state at this filling is a gapped quantum hall state (the "bosonic Pfaffian") which may be viewed as descending from a (bosonic) composite fermi liquid. At large bandwidth the ground state is a bosonic superfluid. We show how both phases and their evolution can be described within a single theoretical framework based on a LLL composite fermion construction. Building on our previous work on the bosonic composite fermi liquid, we show that the evolution into the superfluid can be usefully described by a non-commutative quantum field theory in a periodic potential.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.