Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Attentive Neural Architecture for Fine-grained Entity Type Classification (1604.05525v1)

Published 19 Apr 2016 in cs.CL

Abstract: In this work we propose a novel attention-based neural network model for the task of fine-grained entity type classification that unlike previously proposed models recursively composes representations of entity mention contexts. Our model achieves state-of-the-art performance with 74.94% loose micro F1-score on the well-established FIGER dataset, a relative improvement of 2.59%. We also investigate the behavior of the attention mechanism of our model and observe that it can learn contextual linguistic expressions that indicate the fine-grained category memberships of an entity.

Citations (84)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.