Complex Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior (1604.05069v2)
Abstract: We provide several Tauberian theorems for Laplace transforms with local pseudofunction boundary behavior. Our results generalize and improve various known versions of the Ingham-Fatou-Riesz theorem and the Wiener-Ikehara theorem. Using local pseudofunction boundary behavior enables us to relax boundary requirements to a minimum. Furthermore, we allow possible null sets of boundary singularities and remove unnecessary uniformity conditions occurring in earlier works; to this end, we obtain a useful characterization of local pseudofunctions. Most of our results are proved under one-sided Tauberian hypotheses; in this context, we also establish new boundedness theorems for Laplace transforms with pseudomeasure boundary behavior. As an application, we refine various results related to the Katznelson-Tzafriri theorem for power series.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.