Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Multidimensional Tauberian theorems for wavelet and non-wavelet transforms (1012.5090v2)

Published 22 Dec 2010 in math.FA

Abstract: We study several Tauberian properties of regularizing transforms of tempered distributions with values in Banach spaces, that is, transforms of the form $M{\mathbf{f}}{\phi}(x,y)=(\mathbf{f}\ast\phi{y})(x)$, where the kernel $\phi$ is a test function and $\phi_{y}(\cdot)=y{-n}\phi(\cdot/y)$. If the zeroth moment of $\phi$ vanishes, it is a wavelet type transform; otherwise, we say it is a non-wavelet type transform. The first aim of this work is to show that the scaling (weak) asymptotic properties of distributions are \emph{completely} determined by boundary asymptotics of the regularizing transform plus natural Tauberian hypotheses. Our second goal is to characterize the spaces of Banach space-valued tempered distributions in terms of the transform $M{\mathbf{f}}_{\phi}(x,y)$. We investigate conditions which ensure that a distribution that a priori takes values in locally convex space actually takes values in a narrower Banach space. Special attention is paid to find the \emph{optimal} class of kernels $\phi$ for which these Tauberian results hold. We give various applications of our Tauberian theory in the pointwise and (micro-)local regularity analysis of Banach space-valued distributions, and develop a number of techniques which are specially useful when applied to scalar-valued functions and distributions. Among such applications, we obtain the full weak-asymptotic series expansion of the family of Riemann-type distributions $R_{\beta}(x)=\sum_{n=1}{\infty}e{i\pi xn{2}}/n{2\beta}$, $\beta\in\mathbb{C}$, at every rational point. We also apply the results to regularity theory within generalized function algebras, to the stabilization of solutions for a class of Cauchy problems, and to Tauberian theorems for the Laplace transform.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.