Papers
Topics
Authors
Recent
2000 character limit reached

Sentence-Level Grammatical Error Identification as Sequence-to-Sequence Correction (1604.04677v1)

Published 16 Apr 2016 in cs.CL

Abstract: We demonstrate that an attention-based encoder-decoder model can be used for sentence-level grammatical error identification for the Automated Evaluation of Scientific Writing (AESW) Shared Task 2016. The attention-based encoder-decoder models can be used for the generation of corrections, in addition to error identification, which is of interest for certain end-user applications. We show that a character-based encoder-decoder model is particularly effective, outperforming other results on the AESW Shared Task on its own, and showing gains over a word-based counterpart. Our final model--a combination of three character-based encoder-decoder models, one word-based encoder-decoder model, and a sentence-level CNN--is the highest performing system on the AESW 2016 binary prediction Shared Task.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.